よくある質問にお答えします

~FAQセッション~

NetAlly

Channel Account Manager Japan & S.Korea

杵鞭 俊之

simplicity • visibility • collaboration | 1

Agenda

Wi-Fi

Q1. Wi-Fi 6に対応している製品は? Q2. 手軽にサイト・サーベイはできないか? Q3. 使っているWi-Fi環境でのスループットを実測したいが、どうすれば? Q4. 夜中や休日にWi-Fiが止まったりするトラブルがあって困っている。

有線LAN

Q5. PoEの給電能力が上がっているようだが、電圧を測るだけでいいのか? Q6. 最近「マルチギガリンク」という言葉を聞くが、これは何でしょうか?

Wi-Fi & 有線LANO7. 現場に行かないで、**Wi-Fi**や有線**LAN**の測定はできないか?
O8. 測定した情報を社内で共有したいが、何かいい方法は?
O9. **ネットワーク機器や接続状況を把握出来ずに困っているが、良い方法は?**Q10. 「GIGAスクール構想」の設置はほぼ終わったようだが、これからの運用時に起きたトラブルにはどう対応すればいいか?

NetAlly's Heritage

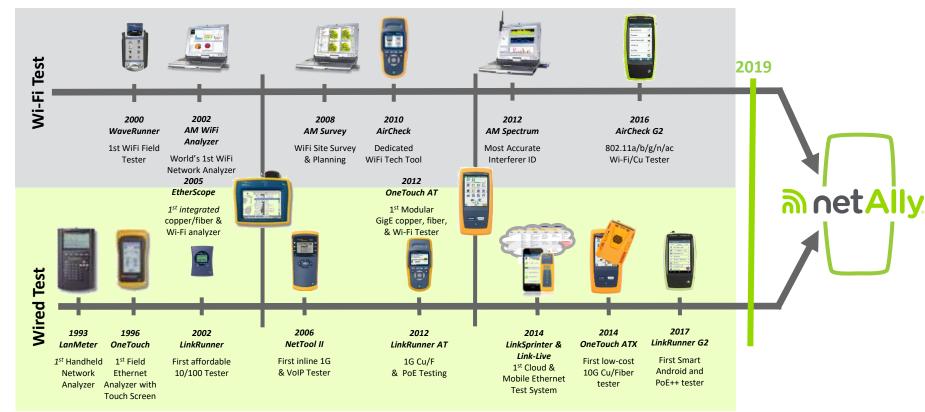
NETSCOUT.

ଲ netAlly.

1993-2015

2015-2019

AirCheck G2 LinkRunner ® G2

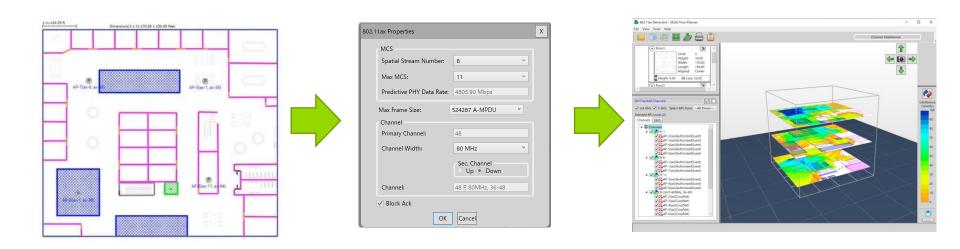

October 2019

EtherScope® nXG

革新の歴史を継続

WiFi 6への対応製品に関して

WIFI6 対応製品


EtherScope nXG

AirMagnet Survey Pro

WIFI6 プランとデザイン

WiFi6 デザイン 環境情報 WiFI6 の要件

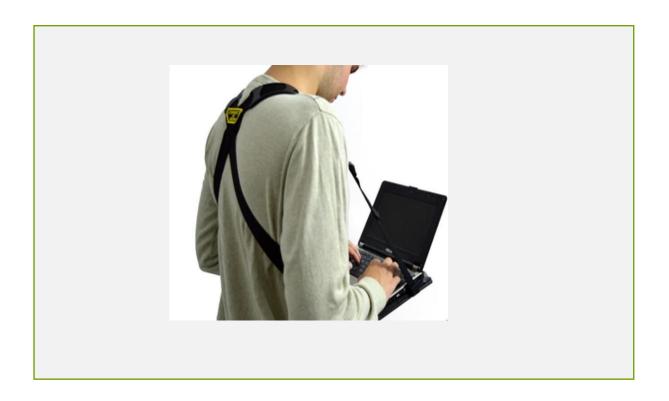
現地での再作業を最小化しコスト削減

Wi-Fi 6 パッシブ/アクティブサーベイに対応

Wi-Fi6アクティブ調査を実行

- 実際のWi-Fi 6 データレートと スピードに対応
- Intel チップセットに対応
 - Intel ax200
 - Intel ax201
 - Others!

製品機能一覧


製品 機能	AirCheck G2	EtherScope nXG	AirMagnet Survey Pro
802.11 a/b/g/n/ac	©	©	©
802.11ax (WiFi6)	可視化	可視化	©
Planning	X	X	©

手軽にサイトサーベイを行いたい

従来型 Wi-Fi サイト・サーベイvs. AirMapper

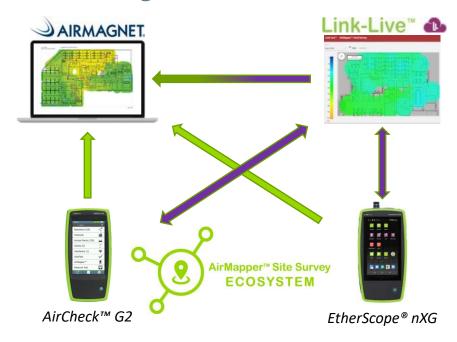
利用モデル: (1) 簡単導入 ACKG2 + Link-Live + AllyCare

Value:

- ・最も費用対効果の高いサイトサーベイ手法
- ・*H/W* ベースコレクタ → ノイズ情報取得
- ・迅速、容易に Wi-Fi 状況を理解
- ・導入が手軽
- ・シンプルで丈夫な筐体-追加部品不要
- 拡張性も

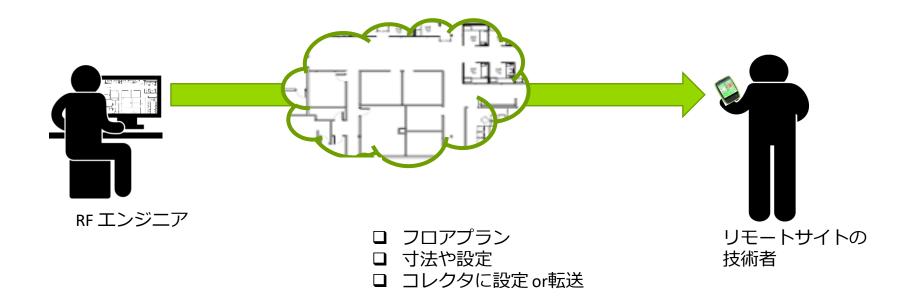
利用モデル: (2) AirMag 拡張型 ACKG2/ESnXG to AMM Base

解析& レポート化


コレクタ

Value:

- ・H/W ベースコレクタ → ノイズ取得
- ・プロフェッショナルなレポート
- ・詳細な分析(AirWISE, etc.)

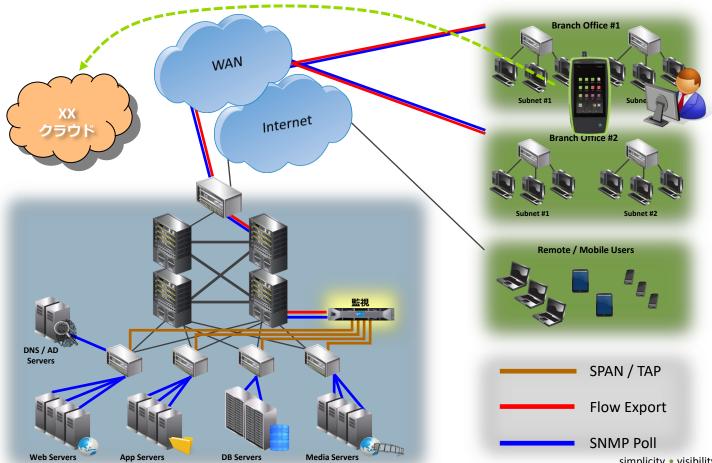

AirMapper EcoSystemの活用

完全な相互運用性により、データ収集と調査分析に比類のない柔軟性を提供 -より多くの機能, さらなる付加価値 -

多くの変更で工程が変わる!

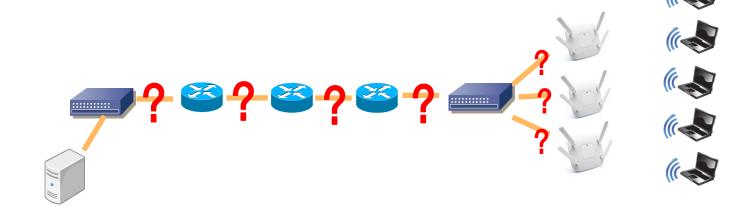
AllyCare契約者には追加機能

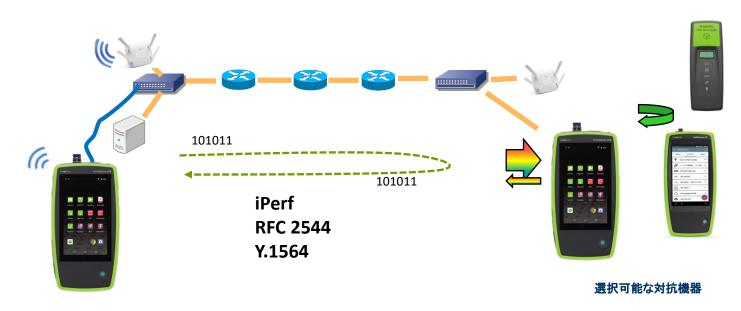
Link-Live™ db 収集と解析を簡素化 Link-Live" AirMapper": Final Survey


解析、ドキュメント化

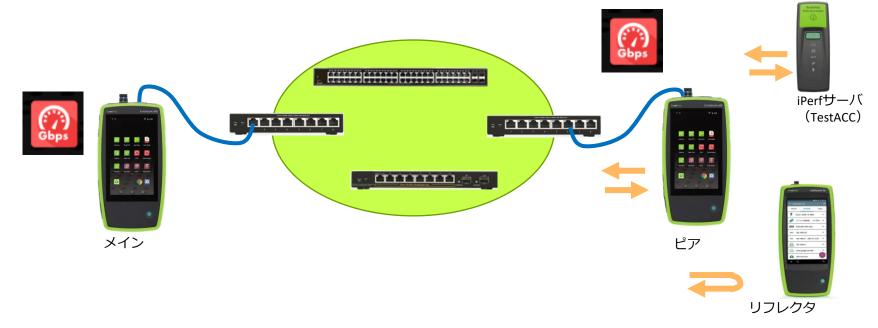
データ取得

利用環境のスループットについて




Wirelessの裏には

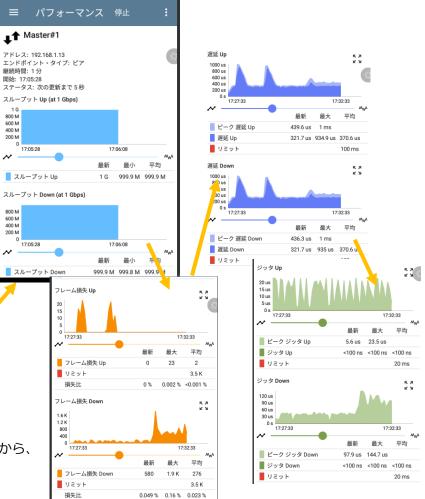
- Wi-Fiの背後には必ず有線LANが存在
- Wi-Fi通信レートや利用率が上がると有線側の状態もより重要となってくる
- バンド幅が有線ネットワーク側においてもパフォーマンスが保てるのか?
- 802.11ac/ax の通信レートを保てる伝送経路?


End-to-Endパフォーマンスと品質を明確化

通信経路の伝送品質を検証したい

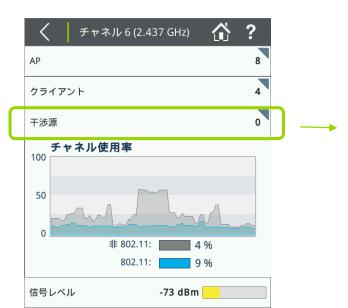
通信経路内で通信スピードが思ったように上がらない、不安定、潜在的不具合が懸念される際の検証に有効です。 パフォーマンス(通信速度)、通信品質(パケットロス、遅延、揺らぎ)品質面の潜在的な不安定要素を診断/検証

テスト構成


パフォーマンステストにおいて 対となる2台~4台のテスターでテスタで挟まれた区間の 通信品質を確認できます。

基本設定を実施する「メイン」とデータを送受するだけ の「ピア」または「リフレクタ」を配置します。

準備が整ったら、ピアのスタートを実施してから、 メインを開始


夜間/休日や特定の時間帯にWi-Fiが止まったり するトラブルがあって困っている

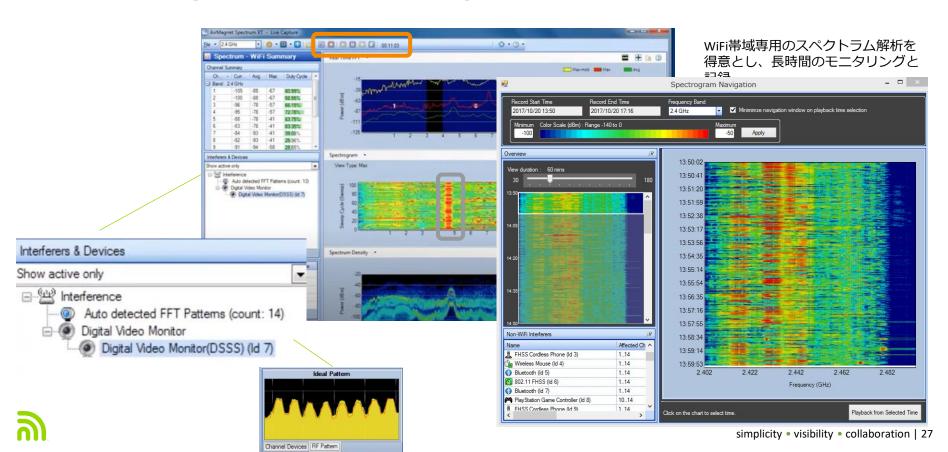
間欠問題に対する対応について

AirCheckG2 干渉源の検出と識別

AirCheckG2 ver2では、特別なハードウエアの追加無しに、内部Wi-Fi 機能を利用して、電子レンジ、無線カメラなど干渉源の検出や分類

Periodic AutoTest:繰り返しテスト

不定期に起きる問題への対処に有効

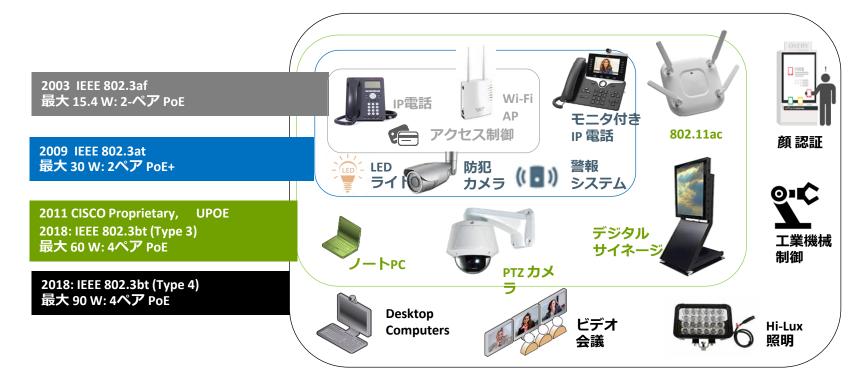

繰り返しの自動テストを実行できることで、安定した接続ができているのか、 不定期に起こる不具合などの検証に役立つ。

自動テストを繰り返し実行 1分~24時間 Link-Live トにテスト中の経過は集約 問題相関のためにトレンドグラフと組み合わせて



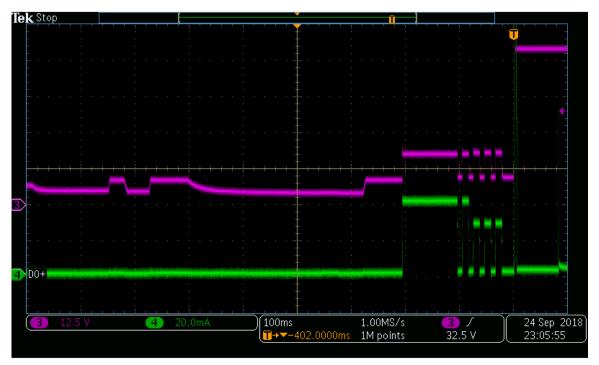
AirMagnet によるPlayback

AirMagnet Wi-Fi Analyzer



PoEの給電能力に対する対処について

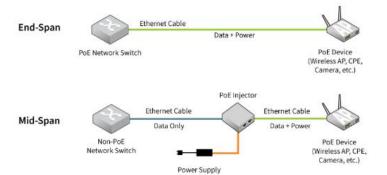
PoEとデバイス進化


IEEE PoE タイプ/クラス 供給能力

	Class	Туре	ペア数	Power Sourced at PSE	Loaded Power at PD	供給電圧 at PD
	0	1	2	15.4W	13.0W	37 – 57V
802.3bt	1	1	2 or 4	4W	3.84W	37 – 57V
	2	1	2 or 4	7W	6.49W	37 – 57V
	3	1	2 or 4	15.4W	13.0W	37 – 57V
	4	2	2 or 4	30W	25.5W	42.5 – 57V
	5	3	4	45W	40.0W	42.5 – 57V
	6	3	4	60W	51.0W	42.5 – 57V
	7	4	4	75W	62.0W	41.1 – 57V
	8	4	4	90W	71.3W	41.1 – 57V

新規格 IEEE802.3bt: タイプ3、4 及び クラス5~8まで追加。また、ネゴシエーション **必須となり、**802.3btではクラス0は削除

リンク時のネゴシエーション例



.bt Class 8 - LRG2

新しい課題: WiFi 6 のPoE

https://www.netally.com/understanding-poe-terminology/

IEEE Standard	PD (w)	PSE (w)	EA Class	ペア
	12.95	15.4	0	2
802.3 af	3.84	4	1	2
(PoE)	6.49	7	2	2
	12.95	15.4	3	2
802.3 at (PoE+)	25.5	30	4	2
802.3 bt	40	45	5	4
(PoE++, 4-pair PoE, 4PPoE, UPOE)	51	60	6	4
802.3 bt	62	75	7	4
(higher-power PoE)	73	90	8	4

LRG2,LR10G,ESnXGによる検証

自動テストとレポート - 約20年の経験

- 最大 PoE クラス 8 PD 電圧と負荷試験 (71.3W@PD)
- ・最大1Gbps リンクスピード/duplex メタル線、ファイバー
- 直近SWを迅速に検出 (モデル名、ポート#, VLAN #)
- DHCP (w/options), DNS, ルーティングの検証
- Web & デバイスやWebの明確な接続性
- テスト結果やデータを無料で利用可能なLink-Live クラウドへアップロード
- LRG2,LR10G,ESnXGでは最大90W@PSEに対応

マルチギガビット・イーサネット

出典: フリー百科事典『ウィキペディア(Wikipedia)』

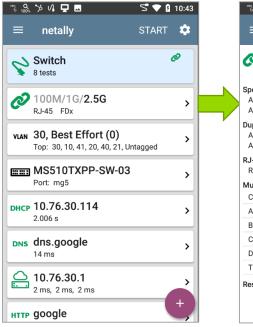
この項目「**マルチギガビット・イーサネット**」は途中まで翻訳されたものです。(原文:06:49, 24 September 2016 UTC)

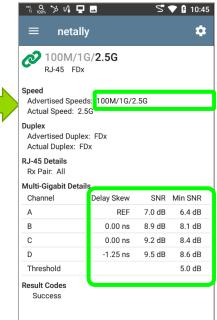
A**⇔**あ

翻訳作業に協力して下さる方を求めています。ノートページや履歴、翻訳のガイドラインも参照してください。**要約欄への翻訳情報の記入**をお忘れなく。 (2016年9月)

マルチギガビット・イーサネットは、2.5ギガビット/秒ないし5ギガビット/秒の仕様のイーサネットの規格[1]。

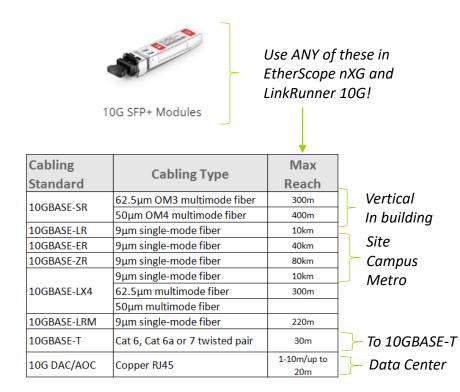
カテゴリ5eまたはカテゴリ6のツイストペアケーブル上で2.5Gbit/sまたは5Gbit/sの速度を実現し、既存のギガビット・イーサネットと10ギガビット・イーサネットとの間で中間的な通信速度を提供、 **2.5GBASE-T**および**5GBASE-T**として標準化作業が進められている[2][3]。


ベンダーによってはNBASE-T、MGBASE-Tとする場合もある。



マルチギガの検証:ケーブルの SNRと遅延

- AutoTestからLink状況を確認
- Link 測定項目を表示
- 設定を検証
- マルチギガのパラメータ測定
 - 遅延スキュー
 - SNR



多様な媒体: 10G SFP+, DAC, AOC

.5m ... 120km

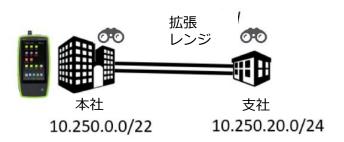


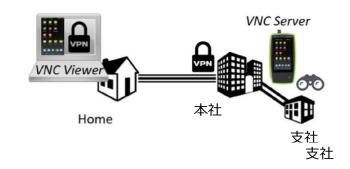
現場に行かずに、測定を行ったり、即座に 結果を知ることが出来ないか?

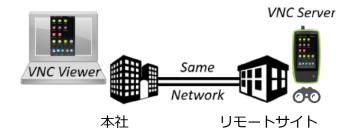
リモート対応でのトラブルシュート

Link-Liveの活用

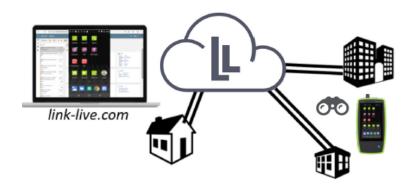
=	Link-Live" Wi-Fi Final Survey: Channels (49)													۵	Studio2020	- Demo 💌
+	Filter		÷													
ш	Channel +	Center Frequency	802.11 Usl	Non 802.11 Util	Frequency Range	Width	Band	Attributes	SNR	Signal	Worst Problem	SSIDs	APs	BSSIDs	Clients	Interferers
(<u>*</u>))	1	2.412 GHz	0%	0%	2.402 - 2.422 GHz	20 MHz	2.4 GHz				Warning(s) 1	22	16	34	11	0
5	2	2.417 GHz	0%	0%	2.407 - 2.427 GHz	20 MHz	2.4 GHz					0	0	0	0	0
î	3	2.422 GHz	0%	0%	2.412 - 2.432 GHz	20 MHz	2.4 GHz					0	0	0	0	0
20	4	2.427 GHz	0%	0%	2.417 - 2.437 GHz	20 MHz	2.4 GHz					1	1	1	0	0
₽	5	2.432 GHz	0%	0%	2.422 - 2.442 GHz	20 MHz	2.4 GHz					0	0	0	0	0
	6	2.437 GHz	0%	0%	2.427 - 2.447 GHz	20 MHz	2.4 GHz				Warning(s) 1	13	12	21	10	0
	7	2.442 GHz	0%	0%	2.432 - 2.452 GHz	20 MHz	2.4 GHz					3	2	3	0	0
	8	2.447 GHz	0%	0%	2.437 - 2.457 GHz	20 MHz	2.4 GHz					0	0	0	0	0
	9	2.452 GHz	0%	0%	2.442 - 2.462 GHz	20 MHz	2.4 GHz					0	0	0	0	0
	10	2.457 GHz	0%	0%	2.447 - 2.467 GHz	20 MHz	2.4 GHz					0	0	0	0	0
	11	2.462 GHz	0%	0%	2.452 - 2.472 GHz	20 MHz	2.4 GHz				Warning(s) 1	18	15	32	10	0






リモートアクセス

リモートアクセスは初期Verより提供

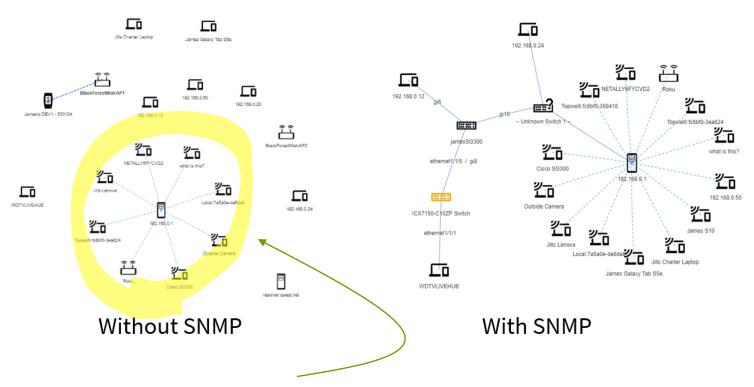


Link-Live 経由で簡単リモート接続

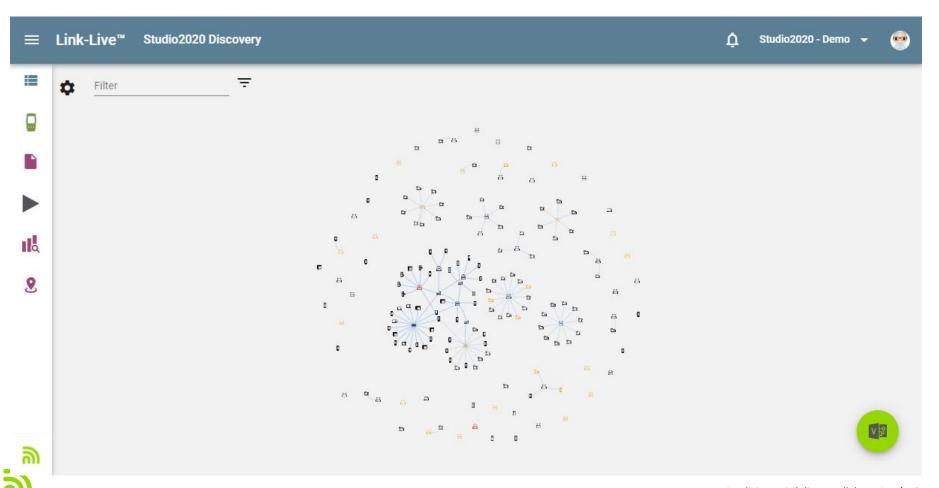
専用回線、VPN など特別な環境不要で、 外部ネットワークの状況把握が可能

日々、増殖するネットワーク機器を管理しきれていない。現 状のNW機器資産や接続状況を簡単に把握できないものか?

現状の機器や接続状況について



マップの生成手順 (Link-Live)



SNMP* とその他の手法

*多くのマップ化技術では、SNMPを利用、NetAllyでは、SNMPはもちろん、それ以外の手法で収集した情報もマップ化!

「GIGAスクール構想」の設置はほぼ終わったようだが、これからの運用時に起きたトラブルにはどう対応すればいいか?

GIGAスクール対応について

Wi-Fi サーベイは実施したが...

Wi-Fi 検証は次の情報を取得し確認:

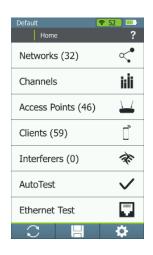
- パッシブ・スキャンの実行
- ・ Wi-Fi デバイスを検出し識別
- ・ Wi-Fi カバレッジを確認
- ・ パラメータを利用し品質を確認 信号強度、ノイズ、SNR、利用率、etc.

Wi-Fi - Channels Map

サイト調査は理解が容易!

カバレッジ不足

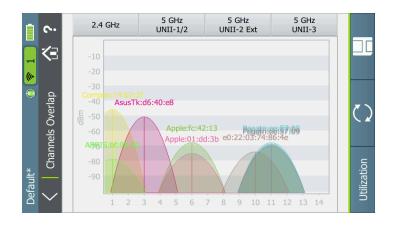
Pass/Fail 解析エンジン



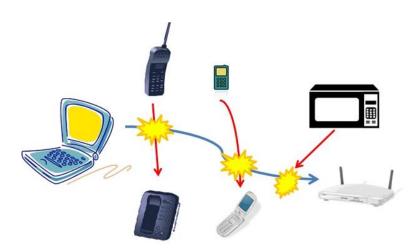
同一CH干涉(CCI)

CCIの問題を検証:

- Wi-Fi テストツールを利用して、 チャネルあたりのAPの数と信号 強度を確認する
- サイト・サーベイを実施



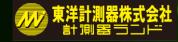
隣接CH干渉 (ACI)


問題は何か?

- ・Wi-Fi測定テスタを使用すると、重複 チャネルや、信号品質を確認できる
- サイトサーベイを実施

非-Wi-Fi 干涉

問題は何か?


- 同じ周波数帯域を使用
- ・強い干渉源を検出->識別
- 2.4GHz では顕著 5GHzでは、DFS (Radar-Detection) も確認

Thank you

E-mail: netally@keisokuki-land.co.jp infoj@netally.com

http://www.keisokuki-land.co.jp/support/netally/

